ABSTRACTS

TRANSIENT PROCESSES IN OVENS WITH RECIRCULATION
OF COMBUSTION PRODUCTS

A. V. Volodarskii and A, A. Mikhelev UDC 664.655

The authors analyze transient changes in the gas composition in an oven heating system with recir-
culation of combustion produets, The results apply also to desiccators and other devices where materials
are heated in a recirculation mode,

The following designations are made:

GV .
T ugtuy Tt—-UG-{—U‘A: (1

K

Here K, represents the concentration of combustion products vg in the gas mixture entering the sys-
tem per unit time through leakage (air v,) and from the oven (combustion products vg) and 74 is the time
in which the gas-air mixture entering the gas ducts of the oven at a volume flow rate vy + v will fill
these ducts after the combustion products have been completely removed, In ovens with recirculation of
the heating gases, unlike in ovens with a complete removal of combustion products, at the inlet to the work-
ing space the entering gases almost completely mix again with gases already in the heating system. As-
suming that, approximately, a gas—air mixture enters and leaves the gas ducts of an oven at a volume
flow rate v + v, we write the following equation for the balance of combustion products in the heating
system of an oven:

(vg+ v4) Kidy — (vg+ vy) Kdv = VK. &)

The first term on the left-hand side represents the volume of gases entering the oven ducts during
the time d7, the second term represents the volume of gases leaving it within the same time, and the
right-hand side of Eq. (2) represents the change in volume of combustion products with a concentration K
inside gas ducts whose volume is V.

LetK = Ky for 7 =0 [1]. Then, from (1) and (2) we have

I<1 - Ko {
T:Ttln——*‘-Kl_K. {3)
We consider special cases of Eq, (2).

1. Let vp = 0 and Ky = 0. Assuming Ky ~K = 0,01, we have from (3) and (1)

l=2.31g

== 46,
Tt 0.01

i.e., the transient time from the initial state K, = 0 to the quasisteady state, where K is almost equal (with~-
in 0.01) to the steady-state concentration K = K; = 1, is 4.6 times longer in a recirculation oven than in
ovens with complete removal of combustion products.

2. The duration of the transient is determined for a bhakery oven. In the most widely used types of
ovens it is: 74 ~ 170 sec with a complete removal of combustion products, T = 780 sec with recirculation
of combustion products.

A relation T = 7 (K; ~K; Ky —K¢) is derived, suitable for calculating and measuring the length of tran-
sient processes.,
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HEAT TRANSFER BETWEEN A TWO-DIMENSIONAL INCIDENT
JET AND A FLAT SURFACE WITHIN THE DEVELOPED-FLOW ZONE

M, I. Davidzon UDC 536.244

When a jet impinges perpendicularly on a flat plate, the spread of fluid over that plate surface can
be approximately divided into three zones to be calculated separately: 1) acceleration flow, 2) transition
flow), and 3) developed (self-adjoint) flow [1].

The author analyzes local heat transfer between a flat turbulent jet and a plate within the third of
these zones. The dimensionless heat transfer coefficients are calculated by solving the momentum equa-
tion for a jet at a wall, on the assumption that the boundary layers are conservative and on the basis of the
analogy between heat transfer and momentum transfer [2]. As the model serves here a zero-gradient
turbulent stream flowing along an impermeable plate. The velocity at the outer edge of the boundary layer
at the end of the acceleration zone is proposed as the velocity scale,

A criterial relation
Sto ~=0. l94Re0_°'2Pr_°'6 (F)—OJ (;;—0‘57 . (1)

is derived and compared with the test data in [3] by Gardon and Aquirat. Here St; = a/ cppUy is the di-
mensionless heat transfer coefficient (Stanton number), U, denotes the stream velocity at the nozzle throat,
Re, = UpHy/ ¥, Hy is the nozzle caliber (smaller dimension), h = h/H,, h denotes the distance from nozzle
throat to plate, X = x/H,, and x is the distance from the critical point.
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TEMPERATURE FIELD OF A TWO-COMPONENT PORQUS
BODY THROUGH WHICH A FLUID FLOWS BETWEEN
IMPERMEABLE WALLS*

M. Ya. Antimirov and A, A, Panferova UDC 536.2:622,276 .4

Two problems are solved here pertaining to the heating of a porous body by a hot stream of liquid or
gas, where the temperatures of both are assumed different, Into account is also taken the thermal contact
between the porous body and semiinfinite impermeable walls, The thermal flux from the liguid or the gas
to the porous body is considered proportional to the temperature between both, Longitudinal and radial
flow are analyzed, It is assumed, furthermore, that the thickness of the porous body is sufficiently small
and that, within each vertical section, the temperatures of the skeleton material and of the fluid are not
functions of coordinate z. Into a porous body occupying the region (—e«< < y<+w,0<Xx<+0, ~h=z
= 0) is squeezed an incompressible fluid at a constant volume rate @ per unit length of the y-axis, in the
linear case, through the plane X = 0 in the x direction, The impermeable wallg are located within the re-
gion (0 =X, z < +o)and (0 =X < +w, —o < 7= —h),

The solution to the problem is obtained in terms of simple formulas entirely suitable for numerical
calculations, In the special case of the porous body removed, these formulas define the temperature field
of a thick-walled channel carrying a gas stream:

w / 242 ! It o \
Tolx, H—To exp (— 85) S’ { - exp[— 1T ]+ aric L Ty )E exp (—11) Io(2 V'6xv; Javyy (g — % ), (1
] 4t /

Te—To ]/n(,,« - 2 ]/t — :
2% 2

T2 0 T0 e (—89) [erp(—) em(lzgxz) oV &) dun 1= ), @
e ° by 2 Vt— . 2

Here Tg(x, t) and Tyy (X, z, t) denote the temperature of the gas and of the pipe wall respectively, T, de-
notes the initial temperature, Te denctes the inlet temperature of the gas, x and z are space coordinates,
t is time, &, 1, Bg, I; are dimensionless parameters involving the thermophysical properties of gas and
pipe. Formula (1) is used here for calculating the gas temperature at instants of time t = 30 secand t

= 300 sec. Analogous formulas are derived for the radial flow of liquid or gas.

X
—B;)

HYDRODYNAMICS AND HEAT TRANSFER IN FILM
CONDENSATION OF PROPANE VAPOR IN A
VERTICAL HEAT EXCHANGERY

A. D, Dvoiris and A, G. Sirotin UDC 536.42.34

The authors analyze the results of an experimental study concerning the hydrodynamics and the heat
transfer in the condensation of saturated propane vapor flowing through tubes of a vertical heat exchanger.
The tubes were made of grade 1Kh18N10T steel, d = 8 mm in diameter and I = 1 m long, The tests were
performed at thermal flux densities ¢ ranging from 5 to 38 kW /m?® and at temperature differences from
2.5 to 18°C under 5-9 bars pressure. The mean~over-the-surface heat transfer coefficients were deter~
mined while the Reynolds number Re of the vapor stream was varied from 3000 to 50,000 and the Reynolds
number Ree of the condensate film was varied from 100 to 1300.

*Original article submitted July 14, 1970; abstract submitted May 24, 1972.
+Original article submitted August 10, 1971; abstract submitted April 13, 1972.
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An analysis of the test data has revealed two fundamental hydrodynamic modes of film flow:
flow mode I characterized by the simultaneous action of gravity and interphase friction forces;
flow mode II dominated by the interphase friction forces.

The boundary relation which defines the regions where these modes prevail is:

—2.2
Rec cr= C(Fer}f) for 0.8 < Frviy <22, (1)
.-

with C ~ 500,

When Re; < Reg,cr (mode I), the effect of velocity on the heat transfer rate can be determined from
the equations:

Qgftty = 1.28n0% for 2.5 < m, < 20, (2)
Oyfoy = 11505 %5 for m, > 20. (3)

The effect of vapor velocity on the heat transfer coefficient within this range, according to these
equations, agrees qualitatively with the results of the numerical Nusselt solution for laminar film conden-
sation, although the actual heat transfer rate is much lower (by 30-50%) than the theoretical one, but the
discrepancy widens with increasing velocity.

For the Reg > Reg cr range (mode II), the test data were generalized by the following equation:
hofog = AT, (4)
where A = 0,136 and m = 24,8/Nuj-? for 50 < 7, < 75, A = 0.183 and m = 16,1/Nuf-® for 75 < 7y < 100.

Within this range the test data agree sufficiently well with the relation proposed by Kruzhilin and
Boiko for turbulent film flow under predominating interphase friction forces.

NOTATION
Ree = qL/Tpcg is the Reynolds number for the film;
Fry = U%;/gd is the Froude number for the vapor stream;
Nuy = aid/ Ae is the Nusselt number for stationary vapor;
Ty = Frypv/pes
q is the thermal flux dengity;
Uy is the mean velocity of vapor stream;
Qg is the heat transfer coefficient for vapor in motion;
o is the heat transfer coefficient for vapor at standstill;
L,d are the length and diameter of tube;
e is the dynamic viscosity of condensate;
Ac is the thermal conductivity of condensate;
oV is the density of vapor;
e is the density of condensate.
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ENGINEERING METHODS OF CALCULATING THE VARIATIONS
IN STEAM TEMPERATURE IN THE BOILER-TURBINE BYPASS

A, Sh, Leizerovich, E, R, Plotkin, UDC 621,165,001.24:536.5
and Yu., L. Izrailev

In the solution of various problems arising in the analysis of steam turbine heating during transient
modes of operation, it is necessary to take into account that the temperature of steam entering the turbine
lags the temperature variation past the boiler, as a result of heat dissipation and accumulation in the
boiler-turbine bypass, For a qualitative estimate of this effect in modern aggregates of typical configura-
tions and with typical flow rate characteristics (of fresh or superheated steam), the bypass is represented
by a first-order inertial element with a time constant equal to the ratio of heat capacities of metal mass
to steam per unit time: Te = Gy /ceDe. The amplitude-frequency characteristics of temperature A(w)
=(1+ szé)‘i/ 2 constructed on this basis agree fairly well with those calculated by more accurate but not
less explicit formulas, Tests and calculations have shown that the effect of the bypass can be appreciable,
especially at low steam rates,

When calculating the temperature of steam entering a turbine and the turbine heatup duringstart,
faults, loading, ete., one must consider the wide variations in the flow rate as well as the complex trend
of the steam temperature past the boiler and, in many cases, the nonuniform geometry with nonuniform
initial and boundary conditions along the bypass. Several algorithms are shown here by which changes
in the steam temperature ¢ and in the metal temperature t along the bypass can be calculated on the basis
of recurrence formulas, using a digital computer for a numerical solution of the differential equation of
heat balance for steam and metal. The stability criteria for such a solution are established with respect
to the width of computation steps along the time 7 and length z coordinates. The effect of a nonuniform
temperature distribution across the wall thickness of an equivalent pipe is accounted for by introducing
the appropriate coefficient y = (1 + 0,35 Bi)™L.

For a bypass with wet or saturated steam, especially in atomic power plants with water-cooled re-
actors, the change in steam quality under constant boundary conditions ¢ = const and 6= const is described
by the expression

oFY [ aFy
#(E W —x (0, 1) = — == (8~ typie ) exp (—W)

where F denotes the area of the heat transfer surface along the bypass over a distance z and r is the
specific heat of evaporation, More complex problems as, for instance, with a variable aggregate state
of the heat carrier o = var and ¢ = var, etc., are solved on a digital computer by the numerical method
of finite differences,

Original article submitied November 9, 1971; abstract submitted April 19, 1972,
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A METHOD OF CALCULATING THE TEMPERATURE OF A SHELL
AROUND A ROD WITH INTERNAL HEAT GENERATION DURING A
SHARP DROP IN THE RATE OF HEAT TRANSFER TO THE
.COOLING FLUID

A. A, Armand¥ and V. V. Krasheninnikov UDC 536,2.01

The temperature field of a rod with uniform internal heat generation is considered when the rod is
inside a thin meftallic shell, The gap between rod and shell is filled with gas. It is assumed here that
steady-state cooling of the rod occurs during surface boiling. It is also assumed that, after a sharp de-
crease in the coolant supply, the heat transfer coefficient hecomes smaller and the heat generation rate
begins to drop exponentially, The heat transmission process is described by the equation of heat conduc-
tion for the rod and by the equation of heat balance for the shell, The problem is solved with the aid of a
Laplace transformation; the original function is defined by a contour integral,

On the basis of the formulas derived here, the variations in the mean temperature of a shell (stain-
less steel 0.6 mm thick) and of a ceramic rod (8.9 mm in diameter) are calculated for an initial steady-
state heat generation of q = 6,16 - 10° keal/m3+h, It is assumed, moreover, that the heat generation rate
drops to 0.3q, at time t = 0 and then decreases according to the relation q = 0.3q,e™-%t, The results of
calculations are shown in Fig, 1 for two widths of the heljum-filled gap, For comparison, a curve is also
shown representing an instantaneous shutoff of heat generation., According fo the graph, the process con-
tinues for 1 min and has the characteristics of a thermal shock. The rise in the shell temperature, follow~
ing a sharp reduction in the heat transfer rate from 100,000 to 2000 keal / m?.h-°K, is due to the rather
large quantity of heat stored in the rod, which raises the temperature of the latter when the thermal re-
sistance at the shell boundary increases.

This illustrative example shows that, as the heat transfer rate decreases, the shell temperature
may for a short time exceed the allowable level, ‘
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Fig. 1. Mean shell temperature (°C) as a function of
time (sec) during the transient: gap width 0.096 mm
(1), 0.048 mm (2); after a step decrease of the heat
generation rate (3).

*Deceased.

Original article submitted February 23, 1972; abstract submitted April 17, 1972,
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SIZE DISTRIBUTION OF VAPOR BUBBLES DURING EFFERVESCENCE
OF A SUPERHEATED LIQUID*

Yu, V. Mironov UDC 536.24

The author analyzes the size distribution of vapor bubbles during effervescence of a superheated
liquid, If neither bubble merger nor bubble fragmentation occurs, then the distribution density function
v is found by solving the nonlinear Cauchy problem for the differential equation

where { denotes time and v denotes the rate of increase of radius r,

If the nucleation rate of critical-size bubbles is determined only by the superheat of the liquid and if
nonlinearities can be disregarded as negligible, then an analytical solution is given for the initial stage of
the effervescence process.

SHIFT OF THE INTERPHASE BOUNDARY DURING DESUBLIMATION
OF WATER VAPOR UNDER BOUNDARY CONDITIONS OF THE
THIRD KIND ¥

V. K. Safonov and A. Z. Volynets UDC 536,422 4

The desublimation of water vapor is analyzed under boundary conditions of the third kind, i.e., with
the thermal resistances between coolant and heat dissipating surface taken into account, The coolant tem-
perature and the vapor pressure in the apparatus are agsumed constant,

The solution to the problem, namely the shift of the interphase boundary is expressed as

E() = Viffar + & — 6, 1)
with & () denoting the thickness of the ice layer, T denoting time, and a denoting the thermal diffusivity.
Parameters g and § are defined as follows:

n
g:l/ﬂiﬂﬁ and 6:}“(7}+2Ri>'
i=1

with the specific heat of ice ¢, the thermal conductivity of ice A, the heat of phase transformation r, the
ice temperature at the interphase boundary Tg, the coolant temperature Tf, the heat transfer coefficient
o, and the thermal resistance R.

Formula (1) was checked out experimentally at a constant coolant temperature (Tg = 213°K) and vari-
ous vapor pressures (0.1-4.5 mm Hg). The equivalent ice thickness (dimension ¢§) was varied from 0,001
to 0.01 m,

The test points did not deviate from values based on formula (1) by more than 15%.

*Original article submitted October 2, 1971; abstract submitted April 7, 1972,
T Original article submitted October 6, 1971; abstract submitted April 24, 1972,

1465



FORWARD PROBLEM AND REVERSE PROBLEM IN DESORPTION
DYNAMICS WITH A VARIABLE INTRAGRAIN DIFFUSIVITY

L. K. Tsabek and I. V. Rozen UDC 541,183

The forward problem and the reverse problem in desorption dynamics and kinetics are solved with
the aid of the two-dimensional Laplace integral transformation, taking into account the linear kinetics of
sorption (desorption) events as well as the equations of material balance, during diffusion, both for sym-
metric sorbent grains and for a cylindrical column, Desorption diffusivity is represented as a power func-
tion of the grain radius, Such a model yields a correct description of kinetic and dynamic desorption test
curves with unusually long "tails" corresponding to long time periods, The equation of sorption kinetics
is analyzed next., The dynamic curves of desorption fronts at the outlet end (forward problem}, in the case
of a column with fixed length ¢(L, t), and the concentration distribution along a column at a fixed instant
of time c(z, T) are represented in terms of Hermite polynomials Hn(x) and series in incomplete gamma
funectiouns I(b, x):

o ol —1
o (Lo 1) = {1 —erf(4) + 2V 2, E Ay exp (— ) Hay (y)} {1 +erf () —29 2, 2 An (—1Y" exp (—43) Hny (yo)} ;

n=3 n=3

Y= (t —ay (2H2)_I/2 , Yo = & (2!12)—1/2§

oo n

N (=Tt ndt ) EAW
ce (L, z)=1_2.1v,,2‘ Py I(m+k+l, T),
n=0 k=0
v N (= 1 o
. : dil(a— T (m+i+ 1)
+] - (gt ) 1)
PN (—1*2 Bl T
n = /7 R (1 — 2k) Wn_zp Ua :
k==0

Ty, T are parameters;

0 n A ) :
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The solution to the reverse problem is found with the aid of derived expressions for the initial mo-
ments (an, mp) and the central moments (un). As an example, the method shown here is applied to plotting
dynamic curves of sorption and desorption fronts for benzene vapor and fine-porous silica gel. It is shown,
furthermore, that sorption curves must be described in terms of Hermite series, desorption—elution in
terms of generalized Laguerre polynomials, and desorption front curves in terms of series in referred
incomplete gamma functions.

Original article submitted October 13, 1971; abstract submitted May 22, 1972,
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TRAVEL OF A THERMAL PERTURBATION THROUGH A
POROUS UNDEFORMABLE MEDIUM

L, XK. Tsabek UDC 541,183

The travel of a 6~ and a step perturbation through a porous undeformable body made up of symmetri-
cally shaped grains is analyzed in the forward problem and in the reverse problem formulation, Analyti-
cal expressions are derived in the form of Hermite-polynomial series and probability-integral series,
with the aid of which one can describe the temperature field along the filtration channel at a fixed instant
of time and also the temperature field at the exit of such a channel when its length is fixed, Two cases are
considered here, both of interest in practical applications where the thermal diffusivity of the solid granular
phase is either much higher (system of Eqs., (1)-(3)) or much lower than that of the filtering liquid or gase-~
ous phase (system of Eqs. (4)~(7)):

ar ar T
—_— _ — TO — = M
o T e IR =T+ BT =Ty = g RS
3T aT,
e T ¥ (T — 79, ato =y (T —Tg) — v:To; (2)
ar :
Tlmo = T, T lz=0 = Ton (), o T4 (1),  T§ = const; (3)
aT ar l+v  or -y 2
= T4 +‘5Xz‘( ar )r=a+h(r——Tﬂ)—x o 4
aT* 02T* v OT*
s =~ T* — T0) = (;
R e R T (5)
370 oT,
5 == T s = =T — vl (6)
T . ar*
. — —_ N - = 0. 7
LU e @

Equations (1) and (4) are equations of heat balance in the filtering gas or liquid respectively, the
first Eq, (2) describes the heat balance in the solid phase of porous grains, the Eq. (2) and the second Eq,
(3) describe the heat balance in the walls of the cylindrical filtration channel, Equation (5) describes the
heat balance in the liquid inside a porous grain, the first Eq, (6) describes the heat balance in the solid
phase of grains (T, T, T*, and T, denote respectively the temperature of the gas, the solid phase of a
porous grain, the liquid inside a porous grain, and the wall of a cylindrical filtration channel). From the
solution to Eqs, (1)-(7), obtained with the aid of a two-dimensional Laplace transformation, follow analyti-
cal expressions for the initial and four central moments, A method is also shown by which the heat trans-
fer coefficients and the thermal diffusivities can be determined from a system of algebraic equations set
up earlier (reverse problem),

The dependence of the lengthwise diffusivity on the filtration velocity is also analyzed.

Original article submitted October 28, 1971; abstract submitted May 22, 1972,
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VISCOSITY OF GASEOUS ALKENES*

A, G. Zhdanov and V, E. Lyusternik UDC 532.13

The viscosity of gaseous methane homologs was studied earlier in [1] systematically over a wide
temperature range, the results indicating an interesting relation between the viscosity and the molecular
structure of the substance, In view of this, it would certainly be worthwhile to examine the viscosity of
the closest analog of paraffins, namely the homologous ethylene (olefine) series, The members of this
series are of great practical importance, inasmuch as they provide the basic substances needed for the
synthesis of polymer compounds,

A complete lack of test data pertaining to the viscosity of heavy alkenes has made it necessary in
our study to examine rather high~-molecular compounds of this series, namely: n-hexene-1, n-heptene-1,
n-octene-1, n-decene-1, and n-dodecene-1.

The measurements were made by the absolute method with a capillary viscometer under a pressure
of 0.8 bar and over a wide temperature range [1].

The total of all possible measurement errors did not exceed 1.8%,

For this study the authors used high-purity materials with an initial concentration not below 99.5%,
on the average. Structural changes in the substances, occurring after high temperature tests, were ex-
amined by repetitive chromatographic analysis and changes in the viscometer geometry were examined
by control tests with standard specimens.

All reliable test data pertaining to the viscosity of ethylene homologs were evaluated together and
a regular trend was detected: a decrease in viscosity with increasing molecular weight (M).

The following semiempirical formula, of the same type as the Sutherland equation, is proposed for
describing available test data on the viscosity of gaseous alkenes:

_ (11.24 + 0.0219M) 732
N = ~—F 1 84.14 = 6.05M ~ 0.0055MT

Over the entire test range of temperatures, it describes the viscosity of any homolog in the series
with a standard deviation of 2%.

LITERATURE CITED
1. A. G. Zhdanov and V, E, Lyusternik, Zh, Fiz. Khim,, 4_5, No. 1, 197 (1971).

VISCOSITY OF GASEOUS ALKYNEST

A. G. Zhdanov and V., E, Lyusternik UDC 523.13

The systematic study concerning the viscosity trends among the various hydrocarbon homologs is
concluded by this report on the acetylene series, The viscosity of gaseous substances in this series was
measured only on acetylene itself and its nearest homolog propylene, Earlier the authors had studied n-
hexyne-1, n-heptyne-1, n-octyne-1, and n-decyne-1 under 2 pressure of 0,9 bar and over a wide

*QOriginal article submitted June 8, 1971; abstract submitted May 6, 1972.
t Original article submitted June 8, 1971; abstract submitted May 6, 1972.
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temperature range within the respective thermal stability limits, The measurements were made by the
absolute method with a capillary viscometer constituting a closed circulation system,

The total of all possible measurement errors did not exceed 1.8%,

It was practically impossible to test the homologs heavier than decyne because of their thermal in-
stability in the gaseous state,

The purity of the hydrocarbons studied here was checked before and after the tests; it did not fall
below 99.5%.

An analysis of reliable existing data on the viscosity of alkynes has yielded the following formula for
this viscosity as a function of both the temperature and the molecular weight:

_ (9.99 + 0.0028M) T3/2 (1)
N = T 7178 T A48M & 0.0019MT
a formula analogous to those for alkanes and alkenes, The coefficients in Eq, (1) were fitted numerically

so as to hold the standard deviation over the entire temperature range within 29 for any of the homologs.

VISCOSITY OF GASEQUS OCTANE AND CYCLOHEXANE ISOMERS

A. G. Zhdanov and V. E, Lyusternik UDC 532.13

The authors studied the effect of the molecular structure on the physical properties of substances
and, particularly, on their viscosity, thus making it feasible to calculate these properties on the basis
of the known chemical structure,

This problem is of most immediate interest in the case of various hydrocarbon isomers, the number
of which increases as the number of carbon atoms increases.

As test objects the authors selected chemically pure 2,2,4-trimethylpentane and cyclohexane. With
a maximum theoretical error of +1,8%, the viscosity of their vapors was measured over a wide range of
temperatures from 75 to 415°C by the absolute method with a capillary viscometer operating as a closed
circulation system,

As a result, the existing test data could be refined and the temperature range of measurements could
be extended.

The temperature~dependence of viscosity is, in the case of iso-octane and cyclohexane, described
by the Sutherland formula with a less than x0.5% error, which agrees within +2.0-2.5% with all data avail-
able in the technical literature,

The effective diameters of branched and cyclic molecules were calculated from viscosity test values,
whereupon these molecules were compared with those of normal hydrocarbons.

In their preceding studies the authors have demonstrated the existence of a regular relation between
the gasokinetic parameters and the molecular structures of normal hydrocarbons in the various homologous
series, Such a comparison is, therefore, of definite interest,

Original article submitted June 8, 1971; abstract submitted May 6, 1972,
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BLOCKAGE OF WATER BY ICE DURING FREEZING IN PORES*

B, V. Zheleznyi UDC 541.183:536.421.4

Considered are the maximum possible stresses in ice during fast crystallization of subcooled water
in capillaries of two very simple shapes: conical and contained within the contact zone between two identical
spheres. The adhesion force betweenice and capillary walls is assumedto govern the mechanical equilibrium,
inagmuch as the strength of ice is relatively high. Under this assumption, differential equations are setupwhich
describe the extremal stress distribution in ice. Their solution indicates that, under the given conditions,
water can be blocked by ice and both states can coexist for a longer time at below-zero temperature and
with an interphase boundary between them,

The maximum absolute water volume (n) and the maximum relative water volume (y) which can be
blocked in capillaries of either shape are calculated for various fill levels and for various shape factors.
Both y and 7 as functions of the relative moisture content ¢ (which, according to the Kelvin equation,
determines the fill level in capillaries) are calculated for water blockage under an ice cap between two
touching spheres, as shown in Fig, 1 (¢ expressed in fractions of the sphere volume), The extreme values
of v and n at ¢ = 1 for this case are 7+107% and 7-107" respectively.

Characteristic are, above all, the extremely small values of y and n and, secondly, the fast in-
crease in n with higher ¢ levels. The small values of y and 7 indicate that the blockage has no appre-
ciable effect at all on the phase balance during the freezing of water in porous and disperse materials,
this balance being governed by physically and chemically bonded water. The fast increase in 7 at higher
¢ levels confirms this, inasmuch as the trend of n (absolute quantity of unfrozen water) versus moisture
content ¢ is, according to experimental evidence, different from the n(p) shown in Fig. 1.

y0* ] 07
\ / 20

. AN Fig. 1. Ratio of blocked water
\ 1 volume to ice cap volume (y) and
2% to sphere volume (n) around the

z / \ contact point between two spheres,

The n-scale is logarithmie.
92

g
97 a6 29 ¢

SOLUTION OF STEADY-STATE HEAT CONDUCTION PROBLEMS
WITH RANDOM BOUNDARY CONDITIONSTY

B. S. Gonchar and A, M. Aizen UDC 536.2

The use of "direct” methods for solving heat conduction problems with random boundary conditions
of the first kind is considered in the one-dimensional case. This makes it possible to determine the pro-
bability distribution density of temperature u and thermal flux q as functions of the relatively random dis-
tributed boundary conditions, if the probability distribution density of the latter is given,

Let u, be a random variable with the probability distribution density f;(u;) and let u, be a deter-
ministic quantity, We then have the probability distribution density of u and q expressed as follows:

1 z — Opouy
fo = o h (TR ()

*QOriginal article submitted June 24, 1970; abstract submitted March 6, 1972.
tOriginal article submitted July 20, 1971; abstract submitted April 24, 1972,
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where z = u or ¢, and functions 8y,, 6,7 depend on the choice of coordinates. Subscripts 1 and 2 refer
to the coefficients of uy and u, respectively,

Of special interest is the case where uy and u, are random variables with probability distribution
densities f;(uy) and £,(4;), The probability distribution density of temperature or thermal flux is deter-
mined according to the formula

— 6,
f@) = jﬁoﬂ M)@. (2)

With the values of f(z) obtained by formula (1) or (2) one can determine the mathematical expectancy,
the dispersion, and the higher-order moments of random distributed temperature and thermal flux, which
completely characterize the heat transfer process with random boundary conditions,

ONE METHOD OF SOLVING HEAT CONDUCTION PROBLEMS
WHICH PERTAIN TO THE HEATING OF BULKY BODIES IN
A MOVING BED

M. K. Kleiner UDC 536,24

Heat conduction problems in the case of bulky bodies in a moving bed belong in the category of prob-
lems with complex boundary conditions: in addition to the usual boundary conditions of the third kind, there
is also given an equation relating the temperature of the gases and the temperature of the heated bodies.
in the general case:

dig(X aw
w00 9L o 00+ S 1 16001 % BIEGEO — 1, X1 B i) — fornpl, (1)

where the given differentiable function W(X) depends on the water equivalents of the gases and of the heated
bodies, and function Q(X) depends on the change in the heat generation in the gaseous phase, The meaning
of all other symbols is as in [1].

The gist of the proposed method, generally similar to that shown in [2], is to first solve the third
boundary-value problem for an arbitrary tg(X) and then, by inserting this solution into (1), to find the func-
tion tg(X) which will satisfy the resulting integrodifferential equation,

A numerical implementation of this method has revealed certain computational difficulties within the
range of small W(X) values, i.e., near the point where the free term and the kernel of the integral equa-
tion have their singularities. If W(X) is a linear function [1]

- L @R =
V&) = v 4 2 =BX, B= Af T Ge 2
and g < 1 is sufficiently small, therefore, then the problem can be solved by the perturbation method as
follows:

to, X) = X Bhc (o, X), ®3
k=

taX) = Xy B g1 (X0 (4)
k=0 .

With (3) and (4), the original problem can be reduced to a sytsem of recurrence equations for ti(p, X) and
t@,k(X) at W(X) = const, Each of these equations is most conveniently solved by the method of integro-
dlfferentml equations shown earlier, and the resulting integral equations by the method in [3], the gist

Original article submitted October 7, 1971; abstract submitted April 13, 1972.
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of the latter being as follows. Let I'(X, s) be the resolvent of the kernel K(X, s). Then their integral
operators I'*(X, s) and K*(X, s) (also the two functions I'(X, s) and K(X, s)) are related as follows:

m m
K (X, 9= 3 ¢ C () T*(X, 9= ) b, C* (zp), (5)
p=1 p=1

where ¢y, yp are known parameters and bp, Zp are expressed in terms of Lp» Yp 28 follows:

m L3 b
1+2—‘5"—=o, 1+2 P 0(r=1,23, ...,m). (8)
Yn—2 o Yn—2p

=1
The use of both methods covers the entire practical range of W(X) values,

These methods yield a series of approximate solutions, provided the third boundary-value problem
is first solved by any one approximate method, The approximate solutions have checked very well against
the exact solutions,
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TEMPERATURE FIELD OF A FLAT WALL WITH A PERIODICALLY
VARYING HEAT TRANSFER COEFFICIENT

V. F. Stepanchuk and M. L. Guris UDC 621.1,016.4:536.24

When a vapor —water mixture flows through insulated pipes of a steam generator, the heat transfer
coefficient may become periodically variable, This fluctuation is indicated by different vapor content
levels in successive steam packets. The time-variation of the heat transfer coefficient can be expressed
in terms of the following law:

0y = m -+ nd9T .
Here w denotes the radian frequency and m, n are constanfs (n < m).

The solution to the transient heat conduction problem for a flat wall at a constant temperature dif-
ference hetween the ambient phases and with a periodically variable heat transfer coefficient was found

to be

§—x
3 +

1
, m ; io Y
LA UAS Y (Alsh l/i%’. xs+ B, ch V‘_Zf- x)

T=T, R

+ et (Az sh VQLT“) x4 Bych V—z%o x) + ..+ ekimr(Ahsh Vk?le—BhCh Vk_flgx),

with 6 denoting the wall thickness, A deno"ting the thermal conductivity of the wall, q denoting the thermal
diffusivity, T, denoting the temperature of the heating medium, and coefficients n, m determined from the

boundary conditions,

!

Original article submitted February 28, 1972; abstract submitted April 26, 1972,
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The obtained solution indicates that the temperature field of a flat wall with a periodically variable
heat transfer coefficient is quite complex, and its components can be represented in terms of harmonic
series,

The magnitude of temperature fluctuations with time and the local temperature gradients in the wall
can be quite appreciable and are determined by the ratio n:m, the radian frequency, the wall thickness,
and the thermophysical properties of the wall material,

The performance of steam generator piping was calculated by this method.

The results indicate wide temperature fluctuations and large temperature gradients over a wide range
of radian frequencies,

EFFECT OF MODIFICATIONS IN THE GEOMETRY OF BONDED
SURFACES ON THE THERMAL RESISTANCE OF SUCH JOINTS*

V. M., Popov UDC 621.792,053:536.24

A study was made to determine how the thermal resistance of the bonding interlayer is affected by
the geometry of metallic surfaces joined together and by the viscosity of the adhesive, It has been estab-
lished experimentally that the thermal resistance of such an interlayer of low~viscosity adhesive increases
with surface roughness and waviness, also with macro-deflections from the plane of the joint,

The thermal resistance of an adhesive joint as a function of the interlayer thickness is, in the case
of low-viscosity adhesives, accurately enough described by the formulas given here,

As the viscosity of the adhesive increases, one notes that the thermal resistance of the joint in-
creases at a fixed interlayer thickness, This trend is explained by the slower filling of surface cavities
due to the higher viscosity of the adhesive,

An effective method is proposed for reducing the thermal resistance of adhesive joints by adding a
disperse filler with high thermal conductivity.

COMPUTER(DIGITAL)-AIDED DESIGN OF THERMISTOR
CIRCUITS WITH VARIABLE CONDITIONS OF HEAT TRANSFER T

N. M. Nedosekina and V, A, Palagin UDC 621.316.825

The transient equation for an R—Ry circuit is nonlinear. It has not been possible to arrive at a
general analytical solution to this equation, because the thermistor parameters k and cy as well as the

*QOriginal article submitted December 7, 1971; abstract submitted May 17, 1972,
{Original article submitted April 4, 1972; abstract submitted May 18, 1972.
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power drain are functions of the temperature and depend not only on the type of thermistor but also on the
conditions of heat transfer. As a component of an electric circuit, a thermistor can be used for probing
various physical properties of the ambient medium functionally related to the temperature. Such param-
eters are the concentration, the velocity, andthe temperature of the ambient medium as well as their com-
bination, These parameters may, moreover, vary in diverse pulse modes, which complicates appreciably
the calculation of {ransients in an R—Ry circuit, If those parameters of the medium which are related to
the conditions of heat transfer vary (and thus at the same time the basic thermistor parameters vary), then
the only way to analyze transients in thermistor circuits is with the aid of analog or digital computers.

The transients are analyzed here by the Runge—Kutta method. An algorithm is developed for solving
the transient equation for an R—Ry circuit, A program is designed for use on a PROMIN'-M digital com-
puter, The transients are calculated for various modes of pulse variation in the conditions of heat transfer,

The results can be used in the design of thermistor circuits operating in continuous-run and pulse
systems for automatically controlling and regulating the parameters of the medium,

MONODISPERSE ATOMIZATION OF A LIQUID BY A
ROTATING DISK

V. F, Dunskii and N. V. Nikitin UDC 66.069.8

Researchers have often been interested in the ability of rotating-disk atomizers to break up a liquid
into a monodispersion, i.e., into identical droplets at a low flow rate of that liquid. A generalization of
the research data has made it possible to develop an approximate but valid calculation procedure,

The basic formulas are given here:

First mode of atomization, The range of parameter values corresponding to the first mode of atomi-
zation is defined by the inequality

0.86 o048 0-12 1 0 \0-62 o
< RO-30 o 0

(1)

The diameter of main droplets is

2.9 (o \12
A . 2
= ( Rp ) ' @
The weight fraction of satellite droplets is
QO.62 p0,62 (00‘48 v0.12

E =86 (%)- . (3)

%62 R0.30

The diameter of the median (with respect to mass) satellite droplets is

1.15( o \l/2
AL P b 4
dn= " (Rp) (4)

Second mode of atomization, The range of parameter values corresponding to the first and the sec-
ond mode, i.e,, to monodisperse atomization is defined by the inequality

1.77 1.2 ,,0.33
o P QROTVT s (5)
01.77 Rl.37
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The diameter of the median (with respect to mass) droplets is, in the case of low-viscosity liquids

2/7
dpy == 1.48 (‘m%g]f) y (6)

and in the case of high-viscosity liquids

0.27 40.306 ,,0.014
212 6 Q v

m =

(7)

p0.27 R0.725 m0.84

The size distribution of satellite droplets in the first mode and of all droplets in the second mode
is a normal one with the dispersion g* ~ 0,17 dm.

The trajectory of droplets in the first mode and of low-viscosity liquid droplets in the second mode
is defined by the formulas

4 a v He =

Ug

u

a=dp/18 VA pA;
b= 0.167(d/vA)R/3;
PA

VA

PN A B i
T=Aln " (l—i—bug/s) , (8)
x =3—: ( ulfd 13 ]/15_ (arctg u(l,/3 b — arctg u3 F) ), (9)
z=gAlt — A(1 —e"74]. (10)
NOTATION

is the radius of disk;

is the angular velocity of disk;

is the flow rate of liquid;

is the density of liquid;

is the kinematic viscosity of liquid;

is the surface tension of liquid;

is the time;

is the absolute velocity of droplet after separation from the disk edge, equal to the
peripheral disk velocity;

is the horizontal component of droplet velocity at point (x, z) on trajectory;

is the density of air;
is the kinematic viscosity of air.

TURBULENT FLOW OF ANNULAR FILMS ALONG A

VERTICAL SURFACE

Yu. T. Borshchevskii, I. M. Fedotkin, UDC 532.542
M. N. Chepurnoi, and V., E. Shnaider

The authors consider the drain of turbulent liquid films along the inside surface of a vertical circular
pipe. In analyzing this flow, they assume a film to be sufficiently thin as compared to the pipe radius, A
film flows under the force of gravity and under a constant pressure gradient,

Original article submitted October 6, 1971; abstract submitted April 7, 1972.
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