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T R A N S I E N T  P R O C E S S E S  IN O V E N S  

O F  COMBUSTION P R O D U C T S  

A .  V .  V o l o d a r s k i i  a n d  A .  A .  

WITH RECIRC ULATION 

Mikhelev UDC 664.655 

The authors  analyze t rans ient  changes in the gas composit ion in an oven heating sys tem with r e c i r -  
culation of combust ion products .  The resul t s  apply also to des icca tors  and other  devices where mater ia l s  
a r e  heated in a rec i rcu la t ion  mode. 

The following designations a re  made:  
VG V 

K~ = ~(;+~ ~t .... �9 (1) 
VG+V A 

Here  K 1 rep resen t s  the concentrat ion of combustion products  v G in the gas mixture entering the s y s -  
tern per  unit t ime through leakage (air VA) and f rom the oven (combustion products  VG) and T t is the t ime 
in which the g a s - a i r  mixture  entering the gas ducts of the oven at a volume flow ra te  v G + v A will fill 
these ducts af ter  the combustion products  have been completely removed.  In ovens with rec i rcula t ion  of 
the heating gases , unlike in ovens with a complete removal  of combustion products ,  a t  the inlet to the work-  
ing space the entering gases a lmos t  completely mix again with gases a l ready in the heating sys tem.  A s -  
suming that, approximately ,  a g a s - a i r  m i x . r e  enters  and leaves the gas ducts of an oven at a volume 
flow rate  v G + vA, we wri te  the following equation for the balance of combustion products  in the heating 
sys tem of an oven: 

(v6+ v A) K~d'~ -- (v6+ ~A)/(dT = VdK. (2) 

The f i rs t  t e rm on the left-hand side represen ts  the volume of gases entering the oven ducts during 
the t ime dT, the second te rm represen ts  the volume of gases leaving it within the same time, and the 
r ight-hand side of Eq. (2) r epresen t s  the change in volume of combustion products  with a concentrat ion K 
inside gas ducts whose volume is V. 

L e t K = K  0fo r  ~-= 0 [1]. Then, f rom (1) and (2) we have 

I Iq- -Ko (3) 
~ * t  n K l _  K " 

We consider special cases of Eq. (2). 

i. Letv A= 0andK 0= 0. AssumingK i-K= 0.01, wehave from (3) and (1) 

,~ I 
--=2.31g 0-~--=4.6, 
Tr 

i.e., the transient time from the initial state K 0 = 0 to the quasisteady state, where K is almost equal (with- 

in 0.01) to the steady-state concentration K = K i = i, is 4.6 times longer in a recirculation oven than in 

ovens with complete removal of combustion products. 

2. The duration of the transient is determined for a bakery oven. In the most widely used types of 

ovens it is: ~'t ~ 170 sec with a complete removal of combustion products, ~- ~ 780 sec with recirculation 

of combustion products. 

A relation ~- = :r (K i_K; K i -Kc) is derived, suitable for calculating and measuring the length of tran- 

sient processes. 
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H E A T  T R A N S F E R  B E T W E E N  A T W O - D I M E N S I O N A L  I N C I D E N T  

JET AND A FLAT SURFACE WITHIN THE DEVELOPED-FLOW ZONE 

M. I .  D a v i d z o n  UDC 536.244 

When a jet  impinges perpendicular ly  on a flat plate ,  the spread  of fluid over  that plate sur face  can 
be approximate ly  divided into th ree  zones to be calculated separa te ly :  1) acce le ra t ion  flow, 2) t ransi t ion 

flow), and 3) developed ~self-ad]oint} flow [1]. 

The author analyzes  local heat  t r an s f e r  between a flat  turbulent jet  and a plate within the third of 
these zones.  The dimensionless  heat  t r ans fe r  coefficients a r e  calculated by solving the momentum equa-  
tion for a jet a t  a wall ,  on the assumption that the boundary l ayers  a r e  conservat ive  and on the basis of the 
analogy between heat  t r ans fe r  and momentum t rans fe r  [2]. As the model se rves  he re  a ze ro -g rad ien t  
turbulent  s t r eam flowing along an impermeable  plate.  The velocity a t  the outer  edge of the boundary layer  
a t  the end of the acce lera t ion  zone is proposed as  the veloci ty  scale .  

A c r i t e r l a l  re la t ion  

St  o = 0. i94Reo-~ -0"6 (~-)-0.4 (~)-0,57 (1) 

is der ived and compared  with the tes t  data in [3] by Gardon and Aquirat .  Here  St o = (~/CppU 0 is the d i -  
mensionless  heat  t r a n s f e r  coefficient  (Stanton number) ,  U 0 denotes the s t r e am  veloci ty  at  the nozzle throat ,  
Re 0 = UoH0/v, H 0 is the nozzle  cal iber  (smaller  dimension),  h = h/I-I 0, h denotes the distance f rom nozzle 
throat  to plate ,  ~ = x/H0,  and x is the distance f rom the cr i t ica l  point. 
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TEMPERATURE FIELD OF A TWO-COMPONENT POROUS 

BODY THROUGH WHICH A FLUID FLOWS BETWEEN 

IMPERMEABLE WALLS* 

M. Ya. Antimirov and A. A. Panferova UDC 536.2:622.276.4 

Two problems a re  solved here  pertaining to the heating of a porous body by a hot s t r eam of liquid or  
gas,  where the t empera tu res  of both a r e  assumed different.  Into account is also taken the thermal  contact  
between the porous body and semiinfinite impermeable  walls.  The thermal flux from the liquid or  the gas 
to the porous body is considered proport ional  to the tempera ture  between both. Longitudinal and radial 
flow a re  analyzed.  It  is a ssumed,  fu r the rmore ,  that the thickness of the porous body is sufficiently small  
and that, within each ver t ical  section,  the tempera tures  of the skeleton mater ia l  and of the fluid a r e  not 
functions of coordinate z. Into a porous body occupying the region ( -  ~ < y < + ~ ,  0 < x < + o~, - h  _ z 
<_ 0) is squeezed an incompress ib le  fluid at  a constant volume ra te  Q per  unit length of the y-ax is ,  in the 
l inear  case ,  through the plane _ x = 0 in the x direction.  The impermeable  walls a re  located within the r e -  
g i o n ( 0 _ x ,  z < + ~ ) a n d  ( 0 - < x <  + ~ ,  - ~  < K _ < - h ) .  

The solution to the problem is obtained in t e rms  of simple formulas  entirely suitable for numerical  
calculat ions.  In the special  case  of the porous body removed,  these formulas define the tempera ture  field 
of a thick-walled channel ca r ry ing  a gas s t r e a m :  

x exp ~ ]+eric - -  exp(--~q) Io(2l/-6~-l)dv,~l t - -  K ) '  (1) 

TW(x'z'O~T~ To = exp (--6x)exp(--Tl)eric 2 V~t~--~----~} /~ ~ )  dl:l~l -~-2 )" (2) 

Here  TG(X, t) andTw(x ,  z, t) denote the t empera tu re  of the gas and of the pipe wall respect ively ,  T O de-  
notes the initial t empera tu re ,  Te denotes the inlet t empera ture  of the gas,  x and z a re  space coordinates ,  
t is t ime,  5, l ,  f12, l 1 a re  dimensionless  p a r a m e t e r s  involving the thermophysical  proper t ies  of gas and_ 
pipe. Formula  (1) is used he re  for calculating the gas tempera ture  at  instants of t ime T = 30 sec and t 
= 300 see.  Analogous formulas  a re  derived for the radial  flow of liquid or gas. 

HYDRODYNAMICS AND HEAT TRANSFER iN 

CONDENSATION OF PROPANE VAPOR IN A 

VERTICAL HEAT EXCHANGER~ 

FILM 

A. Do Dvoiris and A. G. Sirotin UDC 536.4Z.34 

The authors analyze the results of an experimental study concerning the hydrodynamics and the heat 
transfer in the condensation of saturated propane vapor flowing through tubes of a vertical heat exchanger. 
The tubes were made of grade IKhI8NIOT steel, d = 8 mm in diameter and l = 1 m long. The tests were 
performed at thermal flux densities q ranging from 5 to 38 kW/m 2 and at temperature differences from 
2.5 to 18~ under 5-9 bars  p r e s su re .  The m e a n - o v e r - t h e - s u r f a c e  heat t ransfer  coefficients were  de t e r -  
mined while the Reynolds number  Re of the vapor  s t r eam was var ied  from 3000 to 50,000 and the Reynolds 
number  Rec of the condensate film was var ied  from 100 to 1300. 

*Original article submitted July 14, 1970; abstract submitted May 24, 1972. 
$Orig-inal article submitted August i0, 1971; abstract submitted April 13, 1972. 
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An ana lys i s  of the t e s t  data has r evea led  two fundamental hydrodynamic modes  of fi lm flow: 

flow mode  I cha r ac t e r i z ed  by the s imul taneous ac t ion  of gravi ty  and in te rphase  fr ict ion fo rces ;  

flow mode II dominated by the in t e rp l~se  f r ic t ion fo rces .  

The boundary re la t ion  which defines the regions  where  these modes  p reva i l  is:  
I p_~\-2.2 

Rec,,cr = CIFr v | fPJ: 0.8 < Fry p~ < 2.2, (1) 
Pc I Pc 

with C -~ 500. 

When Re c < R e c , c r  (mode I),  the effect  of ve loci ty  on the heat  t r ans f e r  r a t e  can  be de te rmined  f rom 
the  equations:  

%/~o = 1-28~~176 for 2.5 < ~. < 20, (2) 

~ - d ~ - 0  = " " "  0 065 t.ion~" for ~u > 20. (3) 

The effect  of vapor  veloci ty  on the hea t  t r ans f e r  coeff icient  within this range ,  accord ing  to these  
equat ions,  a g r e e s  quali tat ively with the r e su l t s  of the numer i ca l  Nusse l t  solution for l amina r  f i lm conden-  
sat ion,  although the actual  hea t  t r an s f e r  ra te  is much lower  (by 30-50%) than the theoret ica l  one, but the 
d i sc repancy  widens with increas ing  veloci ty.  

F o r  the Re c > R e c , c r  range  (mode II),  the t e s t  data we re  genera l ized  by the following equation: 

%/% = A~ ,  (4) 

where  A = 0.136 and m = 24 .8 /Nu 0.9 for 50 < 7r u < 75, A = 0.183 and m = 16 .1 /Nu g.8 for  75 < 7r u < 100. 

Within this r ange  the t e s t  data ag ree  sufficiently well  with the re la t ion  p roposed  by Kruzhf l in  and 
Boiko for  turbulent  f i lm flow under  predominat ing  in te rphase  fr ic t ion fo rces .  

Re e = q L / r ~ c g  
Fry  = u ~ r / ~  
NUo = ~od/~c 
7r u = F r v P v / P c ;  
q 

Uv 
~c 
e~ 0 
L ,d  

PV 
Pc 

NOTATION 

is the Reynolds number  for  the f i lm; 
is the Froude  number  for  the vapor  s t r e a m ;  
is the Nusse l t  number  for s ta t ionary  vapor ;  

is the t h e r m a l  flux densi ty;  
is the m e a n  veloci ty  of vapor  s t r e a m ;  
is the hea t  t r an s f e r  coeff icient  for  vapor  in motion;  
is the hea t  t r an s f e r  coefficient  for  vapor  at  s tandst i l l ;  
a r e  the length and d ~ m e t e r  of tube; 
is the dynamic  v i scos i ty  of condensate ;  
is the t he rma l  conductivity of condensate ;  
is the densi ty  of vapor ;  
is the densi ty  of condensate.  
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ENGINEERING METHODS OF CALCULATING THE VARIATIONS 

IN STEAM TEMPERATURE IN THE BOILER-TURBINE BYPASS 

A~ Sh. Leizerovieh, E. R. Plotkin, UDC621.165.001.24:536.5 
and Yu. L. Izrailev 

In the solution of va r ious  p rob l em s  a r i s i ng  in the ana lys i s  of s t e am turbine heating during t r ans ien t  
modes  of opera t ion ,  it is n e c e s s a r y  to take into account  that  the t e m p e r a t u r e  of s t e am enter ing the turbine 
lags  the t e m p e r a t u r e  va r i a t ion  pas t  the boi le r ,  as  a r e su l t  of heat  d iss ipat ion and accumula t ion  in the 
bo i l e r - t u rb ine  bypass .  F o r  a quali tat ive e s t ima te  of this effect  in mode rn  aggrega tes  of typical  conf igura-  
tions and with typical  flow r a t e  c h a r a c t e r i s t i c s  (of f resh  or  superhea ted  s team) ,  the bypass  is r e p r e s e n t e d  
by a f i r s t - o r d e r  iner t ia l  e lement  with a t ime  constant  equal to the ra t io  of heat  capac i t i e s  of meta l  m a s s  
to s t e a m  p e r  unit t ime:  T c = eMGM/CcD c. The ampl i tude- f requency  c h a r a c t e r i s t i c s  of t e m p e r a t u r e  A(w) 
= (1 + JT2c ) - l / 2  cons t ruc ted  on this bas i s  ag ree  fa i r ly  well  with those calculated by m o r e  accu ra t e  but not 
l e s s  explici t  fo rmulas .  Tes t s  and calculat ions have shown that the effect  of the bypass  can be apprec iab le ,  
espec ia l ly  a t  low s t eam r a t e s .  

When calculat ing the t e m p e r a t u r e  of s t e a m  enter ing a turbine and the turbine heatup during s ta r t ,  
faul ts ,  loading,  e tc . ,  one mus t  cons ider  the wide var ia t ions  in the flow r a t e  as  well  as  the complex  t rend 
of the s t e am t e m p e r a t u r e  pas t  the boi le r  and, in many  c a s e s ,  the nonuniform geomet ry  with nonuniform 
initial  and boundary conditions along the bypass .  Several  a lgor i thms  a r e  shown he re  by which changes 
in the s t eam t e m p e r a t u r e  0 and in the me ta l  t e m p e r a t u r e  t a long t h e b y p a s s  can be calcula ted on the bas i s  
of r e c u r r e n c e  fo rmu la s ,  us ing a digital compute r  for  a numer ica l  solution of the different ia l  equation of 
hea t  balance for  s t e a m  and meta l .  The s tabi l i ty  c r i t e r i a  for such a solution a r e  es tabl i shed with r e s p e c t  
to the width of computat ion s teps  along the t ime  r and length z coordina tes .  The effect  of a nonuniform 
t e m p e r a t u r e  d is t r ibut ion  a c r o s s  the wall  th ickness  of an equivalent  pipe is accounted for by introducing 
the app rop r i a t e  coeff icient  r = (1 + 0.35 Bi) -1. 

For  a bypass  with wet  o r  sa tu ra ted  s t eam,  espec ia l ly  in a tomic  power  plants  with wa t e r - coo l ed  r e -  
a c t o r s ,  the change in s t e a m  quality under constant  boundary conditions c~ = const  and 0 = const  is desc r ibed  
by the exp re s s ion  

x(z, "O--x(O, ~ ) - - - -  aF~ (O--tir l i t)exp - - ~  

where  F denotes  the a r e a  of the heat  t r a n s f e r  su r face  along the bypass  over  a dis tance z and r is the 
spec i f ic  hea t  of evapora t ion .  More  complex  p rob l ems  a s ,  for  instance,  with a va r i ab l e  agg rega te  s ta te  
of  the heat  c a r r i e r  ~ = v a r  and 0 = va r ,  e tc . ,  a r e  solved on a digital compute r  by the numer ica l  method 
of finite d i f fe rences .  

Original  a r t i c l e  submit ted  Novem ber  9, 1971; a b s t r a c t  submit ted  Apr i l  19, 1972. 
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A METHOD OF CALCULATING THE TEMPERATURE OF A SHELL 

AROUND A ROD WITH INTERNAL HEAT GENERATION DURING A 

SHARP DROP IN THE RATE OF HEAT TRANSFER TO THE 

COOLING FLUID 

A. A. Armand* and V. V. Krasheninnikov UDC 536.2o01 

The t e m p e r a t u r e  field of a rod with uni form internal  heat  generat ion is cons idered  when the rod  is 
inside a thin meta l l i c  shel l .  The gap between rod  and shell  is filled with gas.  I t  is a s s u m e d  h e r e  that  
s t e ady - s t a t e  cooling of the rod occu r s  during sur face  boiling. I t  is a l so  a s s u m e d  that,  a f t e r  a sha rp  de -  
c r e a s e  in the coolant  supply,  the heat  t r a n s f e r  coeff icient  becomes  s m a l l e r  and the hea t  genera t ion r a t e  
begins to drop exponential ly.  The hea t  t r a n s m i s s i o n  p r o c e s s  is desc r ibed  by the equation of heat  conduc-  
t ion for  the rod and by the equation of hea t  ba lance  for the shel l .  The p rob l em is solved with the aid of a 
Lap lace  t r ans fo rma t ion ;  the or iginal  function is defined by a contour integral .  

On the bas is  of the fo rmulas  der ived  h e r e ,  the var ia t ions  in the mean  t e m p e r a t u r e  of a shell  (s ta in-  
l e s s  s teel  0.6 ram thick) and of a c e r a m i c  rod  (8.9 m m  in d iamete r )  a r e  calculated for  an  initial s t e ad y -  
s ta te  hea t  genera t ion of q = 6.16 �9 108 k c a l / m  3 "h. I t  is a s sumed ,  m o r e o v e r ,  that the heat  generat ion r a t e  
drops  to 0.3q 0 a t  t ime  t = 0 and then d e c r e a s e s  accord ing  to the re la t ion  q = 0.3qoe-~176 The r e su l t s  of 
calculat ions a r e  shown in Fig. 1 for  two widths of the he l ium-f i l led  gap. For  compar i son ,  a curve  is a lso  
shown rep resen t ing  an instantaneous shutoff of heat  generat ion.  According to the graph,  the p r o c e s s  con-  
t inues for  1 rain and has the c h a r a c t e r i s t i c s  of a the rmal  shock. The r i s e  in the shell  t empe ra tu r e ,  follow- 
ing a sha rp  reduct ion in the heat  t r a n s f e r  ra te  f rom 100,000 to 2000 k c a l / m  2 �9 h .  ~ is due to the r a t h e r  
l a rge  quantity of hea t  s to red  in the rod,  which r a i s e s  the t e m p e r a t u r e  of the l a t t e r  when the t he rma l  r e -  
s i s t ance  a t  the shell  boundary i n c r e a s e s .  

This  i l lus t ra t ive  example  shows that,  as  the hea t  t r a n s f e r  ra te  d e c r e a s e s ,  the shell  t e m p e r a t u r e  
may  for  a shor t  t ime  exceed the allowable level .  

~ 1 

~ 3 ' 0 ~  o s to 15 zo z5 so 

Fig. 1. Mean shell temperature (~ as a function of 
t ime  (see) dur ing the t rans ient -  gap width 0.096 m m  
(1), 0.048 m m  (2); a f t e r  a s tep d e c r e a s e  of the hea t  
generat ion r a t e  (3). 

*Deceased .  

Original  a r t i c l e  submit ted  F e b r u a r y  23, 1972; a b s t r a c t  submi t ted  A~ri[  17, 1972. 
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S I Z E  D I S T R I B U T I O N  O F  V A P O R  

O F  A S U P E R H E A T E D  L I Q U I D *  

B U B B L E S  D U R I N G  EFFERVESCENCE 

Y u .  V .  M i r o n o v  UDC 536.24 

The author  ana lyzes  the s ize  d is t r ibut ion of vapor  bubbles during e f fe rvescence  of a superhea ted  
liquid. I f  ne i ther  bubble m e r g e r  nor  bubble f ragmenta t ion  occu r s ,  then the dis t r ibut ion densi ty  function 

is found by solving the nonlinear  Cauchy p rob lem for the different ial  equation 

~v 0 
o-7 + ~ (~v) = 0, 

where  t denotes  t ime  and v denotes  the r a t e  of i nc r ea se  of radius  r .  

I f  the nucleat ion ra t e  of c r i t i c a l - s i z e  bubbles is de te rmined  only by the superhea t  of the liquid and if 
nonl inear i t ies  can be d i s r ega rded  as  negligible,  then an analyt ical  solution is given for the initial s tage of 
the e f fe rvescence  p r o c e s s .  

SHIFT OF THE INTERPHASE BOUNDARY DURING DESUBLIMATION 

OF WATER VAPOR UNDER BOUNDARY CONDITIONS OF THE 

THIRD KIND 

V. K. Safonov and A. Z. Volynets LTDC 536,422.4 

The desubl imat ion  of wa te r  vapor  is analyzed under boundary conditions of the third kind, i .e . ,  with 
the t he rma l  r e s i s t a n c e s  between coolant  and heat  d iss ipa t ing  sur face  taken into account.  The coolant  t e m -  
p e r a t u r e  and the vapor  p r e s s u r e  in the appara tus  a r e  a s sumed  constant.  

The solution to the p r o b l e m ,  namely  the shif t  of the in te rphase  boundary is exp re s sed  as  

with ~ (~) denoting the thickness of the ice layer, T denoting time, and a denoting the thermal diffusivity. 

Parameters fl and 5 are defined as follows: 
n 

i = l  

with the specif ic  hea t  of ice c,  the the rma l  conductivity of ice Z, the heat  of phase  t r ans fo rma t ion  r ,  the 
ice t e m p e r a t u r e  a t  the in te rphase  boundary T s,  the coolant t e m p e r a t u r e  T f, the heat  t r a n s f e r  coeff icient  
c~, and the t he rma l  r e s i s t a n c e  R. 

Fo rmula  (1) was checked out exper imenta l ly  a t  a constant  coolant t e m p e r a t u r e  (Tf = 213~ and v a r i -  
ous vapor  p r e s s u r e s  (0.1-4.5 m m  Hg). The equivalent  ice thickness (dimension 6) was va r i ed  f rom 0.001 

to 0.01 rn. 

The test points did not deviate from values based on formula (i) by more than 15%. 

*Original  a r t i c l e  submi t ted  October  2, 1971; a b s t r a c t  submit ted  Apr i l  7, 1972. 
Original  a r t i c l e  submi t ied  October  6, 1971; a b s t r a c t  submit ted  Apr i l  24, 1972. 
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F O R W A R D  P R O B L E M  A N D  R E V E R S E  P R O B L E M  I N  D E S O R P T I O N  

D Y N A M I C S  W I T H  A V A R I A B L E  I N T R A G R A I N  D I F F U S I V I T Y  

L .  K .  T s a b e k  a n d  I .  V.  R o z e n  UDC 541.183 

The forward  p rob lem and the r e v e r s e  p rob l em in desorpt ion  dynamics  and kinet ics  a r e  solved with 
the aid of the two-dimensional  Laplace  integral  t r ans fo rmat ion ,  taking into account  the l inear  kinet ics  of 
sorp t ion  (desorption) events as  well  as  the equations of m a t e r i a l  ba lance ,  dur ing diffusion, both for s y m -  
m e t r i c  sorbent  grains  and for a cyl indr ical  column. Desorp t ion  dfffusivity is r ep re sen t ed  as a power  func-  
t u n  of the gra in  rad ius .  Such a model yields  a c o r r e c t  descr ip t ion  of kinetic and dynamic desorp t ion  tes t  
curves  with unusually long " ta i l s"  cor responding  to long t ime  pe r iods .  The equation of sorp t ion  kinet ics  
is analyzed next.  The dynamic cu rves  of desorp t ion  f ronts  a t  the outlet  end (forward problem},  in the case  
of  a column with fixed length c (L, t), and the concentra t ion dis t r ibut ion along a column a t  a fixed ins tant  
of  t ime c(z,  T) a r e  r e p r e s e n t e d  in t e r m s  of H e r m i t e  polynomials  Hn(x} and s e r i e s  in incomplete  gamma  
functions I(b, x).. 

cf (L, t) = {1--ef t (g)+21/ -~2  s An exp (--Y') ftn-z (g) } {1 q-erf(yo)--2,'/-~-22 s An (--1)n exp (-- Yg) Hn_x (Yo) }-l ; 
n=3 n=3 

y = (t - - a l )  (2~$) - I / 2  , go = a l  (2~z) -1 /2;  

cf(L, 0 = 1-- ~ ]  N. A~,] 
n=O " k=O 

n 

(--t)kn!r(rnq-nq-1) ( + )  

( - -  t)i ai 
Nn ~ -cii] (n -- i)[ P (m -[- i -~ 1) 

i = 0  

[+] 1 n 

A.= ~_a <_~)~ -(-r+~+-r) .(~--r--r) ; /~  k! (n - -  2/0I ~n-zh ~ 
k-----O 

"c o, -c are parameters; 

c,f(z, T) : I -- N o k[ (n--k) I i-bk.-~ I ; 

n 
0 ~ ( - -  1)i my . 

N n = ~  - c ~ j ! ( n - - i ) x r ( i + j + l )  " 
i=0 

The solution to the r e v e r s e  p rob l em  is found with the aid of der ived  express ions  for the initial m o -  
m e n ~  (an, mn) and the cent ra l  momen t s  (~n). As an example ,  the method shown he re  is applied to plott ing 
dynamie curves  of sorpt ion  and desorpt ion fronts  for  benzene vapor  and f ine-porous  s i l ica  gel.  It is shown, 
f u r t h e r m o r e ,  that sorpt ion curves  mus t  be desc r ibed  in t e r m s  of Hermi te  s e r i e s ,  desorpt ion--e lu t ion  in 
t e r m s  of g e n e r a l i z e d L a g u e r r e  polynomials ,  and desorpt ion f ront  curves  in t e r m s  of s e r i e s  in r e f e r r e d  

incomplete  gamma  functions ~ 

'Origtual a r t i c l e  submi t ted  October  13, 1971; a b s t r a c t  submit ted  May 22, 1972. 

1 4 6 6  



T R A V E L  

P O R O U S  

O F  A T H E R M A L  P E R T U R B A T I O N  T H R O U G H  A 

U N D E  F O R M A B L E  M E D I U M  

L .  K .  T s a b e k  UDC541.183 

The t rave l  of a 6-  and a step per turba t ion  through a porous undeformable  body made up of s y m m e t r i -  
ca l ly  shaped grains is analyzed in the forward  problem and in the r e v e r s e  problem formulat ion.  Analyt i -  
cal express ions  a r e  der ived  in the form of Hermi te -polynomia l  s e r i e s  and probabi l i ty- in tegra l  s e r i e s ,  
with the aid of which one can descr ibe  the t empera tu re  field along the f i l t rat ion channel at  a fixed instant 
of t ime and also the t empera tu re  field a t  the exit  of such a channel when its length is fixed. Two cases  a r e  
cons idered  he re ,  both of in te res t  in prac t ica l  applications where  the thermal  diffusivity of the solid granular  
phase is e i ther  much higher  (sys tem of Eqs.  (1)-(3)) or  much lower than that of the f i l ter ing liquid or  gase -  
ous phase (system of Eqs.  (4)-(7)): 

OT OT 02T 
0--7- - ] - u  ~ - z  + 5 y ~ ( T - - T  o ) + h ( T  - -  To) = X O z ~  ; (1)  

OT ~ OTo 
0t --  7 (T - -  TO), 0t --  7z (T - -  To) - -  72To; (2)  

OT _ TOot * (t), TO O = const; (3 )  TIz=O = 706 (t), T [z=0 = T0r] (t), Oz 

OT OT ( 1 + v 

o--t + u o---Z- + 6z~ r- 
OT* ) O~ 
Or ,=a + h ( T - T ~  O z ~ ;  (4) 

0T* (027" ~ 0T* ) + V, (r* -- V~ = 0; (5) 
Ot - -  Z~ \ Or2 + r O----7- 

OT o OT o 
dt  - -  7 ( TO - -  T*) ,  Ot - -  Y2 (T  - -  To) - -  yzTo; (6)  

OT* r=a dT* r=o ~i ~ = a (T  - -  T*) Ir=a"  Or = 0. ( 7 )  

Equations (1) and (4) a r e  equations of heat  balance in the f i l ter ing gas or  liquid respec t ive ly ,  the 
f i r s t  Eq.  (2) desc r ibes  the heat  balance in the solid phase of porous  grains ,  the Eq. (2) and the second Eq. 
(3) descr ibe  the heat  balance in the walls of the cyl indrical  f i l t rat ion channel. Equation (5) descr ibes  the 
heat  balance in the liquid inside a porous grain,  the f i r s t  Eq. (6) descr ibes  the heat balance in the solid 
phase of grains (T, T ~ T*,  and T O denote respec t ive ly  the t empera tu re  of the gas, the solid phase of a 
porous grain,  the liquid inside a porous grain,  and the wall of a cyl indrical  f i l t rat ion channel). F ro m the 
solution to Eqs.  (1)-(7), obtained with the aid of a two-dimensional  Laplace t ransformat ion ,  follow analy t i -  
cal express ions  for  the initial and four central  moments .  A method is also shown by which the heat  t r a n s -  
fer  coefficients and the the rmal  diffusivit ies can be de termined  f rom a sys tem of a lgebraic  equations set  
up e a r l i e r  ( r eve r se  problem).  

The dependence of the lengthwise diffusivit3~ on the f i l t rat ion veloci ty is also analyzed.  

Original a~?ticle submitted October  28, 1971; abs t r ac t  submitted May 22, 1972. 

1467 



V I S C O S I T Y  OF G A S E O U S  A L K E N E S *  

A.  G. Z h d a n o v  a n d  V. E .  L y u s t e r n i k  UDC 532.13 

The viscosity of gaseous methane homologs was studied ear l ie r  in [1] systematically over a wide 
temperature range, the results indicating an interesting relation between the viscosity and the molecular 
s tructure of the substance. In view of this, it would certainly be worthwhile to examine the viscosity of 
the closest  analog of paraffins, namely the homologous ethylene (olefine} ser ies .  The members of this 
ser ies  are  of great practical importance, inasmuch as they provide the basic substances needed for the 
synthesis of polymer compounds. 

A complete lack of test  data pertaining to the viscosity of heavy alkenes has made it necessary in 
our study to examine rather  high-molecular compounds of this ser ies ,  namely, n-hexene-1, n-heptene-1, 
n-octene-1, n-decene-1, and n-dodecene-1. 

The measurements were made by the absolute method with a capillary viseometer  under a p ressure  
of 0.8 bar and over a wide temperature range [1]. 

The total of all possible measurement e r ro r s  did not exceed 1.8%. 

For this study the authors used high-purity materials with an initial concentration not below 99.5%, 
on the average. Structural changes in the substances, occurring after  high temperature tests,  were ex- 
amined by repetitive chromatogral~hic analysis and changes in the viscometer geometry were examined 
by control tests with standard specimens. 

All reliable test  data pertaining to the viscosity of ethylene homologs were evaluated together and 
a regular trend was detected: a decrease in viscosity with increasing molecular weight (M). 

The following semiempirical  formula, of the same type as the Sutherland equation, is proposed for 
describing available test data on the viscosity of gaseous alkenes: 

(I 1,24 -}- 0,0219M) T 3t2 
rl = V q-- 84.14 ~- 6.05M + 0.0055MT 

Over the entire test  range of temperatures ,  it describes the viscosity of any homolog in the ser ies  
with a standard deviation of 2%. 

I~ 
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V I S C O S I T Y  OF G A S E O U S  A L K Y N E S ~  

A.  G. Z h d a n o v  a n d  V. E .  L y u s t e r n i k  UDC 523.13 

The systematic study concerning the viscosity trends among the various hydrocarbon homologs is 
concluded by this repor t  on the acetylene ser ies .  The viscosity of gaseous substances in this ser ies  was 
measured only on acetylene itself and its nearest  homolog propylene. Ear l ier  the authors had studied n- 
hexyne-1, n-heptyne-1, n-octyne-1, and n-decyne-1 under a p ressure  of 0.9 bar and over a wide 

*Original art icle submitted June 8, 1971; abstract submitted May 6, 1972. 
Original article submitted June 8, 1971; abstract submitted May 6, 1972. 

1468 



t e m p e r a t u r e  range  within the r e s p e c t i v e  t he rma l  s tabi l i ty  l imi t s .  The m e a s u r e m e n t s  we re  made  by the 
absoltrte method with a cap i l l a ry  v i s c o m e t e r  const i tut ing a c losed c i rcula t ion  sys t em.  

The total of al l  poss ib le  m e a s u r e m e n t  e r r o r s  did not exceed 1.8%. 

I t  was p rac t i ca l ly  imposs ib le  to t e s t  the homologs  heav i e r  than decyne because  of thei r  t he rma l  in-  
s tab i l i ty  in the gaseous  s ta te .  

The pur i ty  of the hydrocarbons  studied he re  was checked before  and a f t e r  the tests~ it did not fall 
below 99.5%. 

An ana lys i s  of r e l i ab le  exis t ing data on the v i scos i ty  of a lkynes  has  yielded the following formula  for  
this v i scos i ty  as  a function of both the t e m p e r a t u r e  and the mo lecu l a r  weight:  

(9.99 + 0.0028M) T 3/2 ( 1} 
~l = T + 71.74 + 4.46M + 0.0019MT ' 

a formula  analogous to those  for  a lkanes  and a lkenes .  The coeff icients  in Eq. (1) we re  fitted numer ica l ly  
so as  to hold the s tandard  deviat ion over  the ent i re  t e m p e r a t u r e  range  within 2% for any of the homologs.  

VISCOSITY OF GASEOUS OCTANE AND CYCLOHEXANE ISOMERS 

A. G. Zhdanov and V. E. Lyusternik UDC 532.13 

The authors  studied the effect  of the mo lecu l a r  s t ruc tu re  on the physica l  p r o p e r t i e s  of subs tances  
and,  p a r t i c u l a r l y ,  on the i r  v i scos i ty ,  thus making it  feas ib le  to ca lcula te  these  p r o p e r t i e s  on the bas i s  
of the known chemica l  s t r uc tu r e .  

Th is  p rob l em  is of m o s t  immedia te  i n t e r e s t  in the case  of va r ious  hydroca rbon  i s o m e r s ,  t he  number  
of which i n c r e a s e s  as  the number  of ca rbon  a toms  i n c r e a s e s .  

As t e s t  objec ts  the au thors  se lec ted  chemica l ly  pu re  2 , 2 , 4 - t r ime thy lpen t ane  and cyclohexane.  With 
a m a x i m u m  theore t ica l  e r r o r  of • 1.8%, the v i scos i ty  of the i r  vapo r s  was m e a s u r e d  over  a wide range  of 
t e m p e r a t u r e s  f rom 75 to 415~ by the absolute  method with a cap i l l a ry  v i s c o m e t e r  opera t ing  as  a c losed 
c irculation system. 

As a result, the existing test data could be refined and the temperature range of measurements could 

b e extended. 

The t e m p e r a t u r e - d e p e n d e n c e  of v i scos i ty  is ,  in the case  of i so -oc tane  and cyclohexane,  desc r ibed  
by the Sutherland fo rmula  with a l e s s  than • e r r o r ,  which ag ree s  within • with all  data a v a i l -  
able  in the technical  l i t e r a t u r e .  

The effect ive d i a m e t e r s  of b ranched  and cycl ic  molecu les  Were calcula ted f rom v i scos i ty  tes t  va lues ,  
whereupon these  molecu les  w e r e  c o m p a r e d  with those of no rma l  hydrocarbons .  

In the i r  p reced ing  s tudies  the authors  have demons t r a t ed  the exis tence  of a r egu l a r  re la t ion  between 
the gasokinet ic  p a r a m e t e r s  and the mo lecu l a r  s t r u c t u r e s  of normal  hydrocarbons  in the var ious  homologous 
s e r i e s .  Such a c o m p a r i s o n  i s ,  t he re fo re ,  of definite in te res t .  

Original  a r t i c l e  submi t ted  June 8, 1971; a b s t r a c t  submi t ted  May 6, 1972. 
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B L O C K A G E  OF W A T E R  BY ICE DURING F R E E Z I N G  IN P O R E S *  

B.  V. Z h e l e z n y i  UDC 541.183:536.421,4 

Considered are the maximum possible stresses in ice during fast crystallization of subcooled water 
in capillaries of two very simple shapes: conical and contained within the contact zone between two identical 
spheres. The adhesion force between ice and capillary walls is assumed to govern the mechanical equilibrium, 
inasmuch as the strength of ice is relatively high. Under this assumption, differential equations are set up which 
describe the extremal stress distribution in ice. Their solution indicates that, under the given conditions, 
water can be blocked by ice and both states can coexist for a longer time at below-zero temperature and 
with an interphase boundary between them. 

The maximum absolute water volume (7) and the maximum relative water volume (T) which can be 
blocked in capillaries of either shape are calculated for various fill levels and for various shape factors. 
Both 7 and ~ as functions of the relative moisture content ~0 (which, according to the Kelvin equation, 
determines the fill level in capillaries) are calculated for water blockage under an ice cap between two 
touching spheres, as shown in Fig. 1 (r expressed in fractions of the sphere volume). The extreme values 
of ~ and ~ at ~o = 1 for this case are 7" 10 -6 and 7.10 -~ respectively. 

Characteristic a re ,  above all, the extremely small values of T and ~ and, secondly, the fast in- 
crease in ~ with higher 9 levels. The small values of T and ~ indicate that the blockage has no appre- 
ciable effect at  all on the phase balance during the freezing of water in porous and disperse materials,  
this balance being governed by physically and chemically bonded water. The fast increase in ~ at higher 
9 levels confirms this, inasmuch as the trend of ~ (absolute quantity of unfrozen water) versus moisture 
content 9 is, according to experimental evidence, different from the ~(~) shown in Fig. 1. 

7-I0" " <  I r/"Io'~ 

o Fig. 1. Ratio of blocked water 
~ /  t volume to ice cap volume (T) and 

2,a to sphere volume (~) aro, md the 
e / y . . . , . ~ d  i kkk  ~ contact point between two spheres. 

The r~-scale is logarithmic. 
0,2 

q7 .qe 0,~ 

SOLUTION OF STEADY-STATE HEAT CONDUCTION PROBLEMS 

WITH RANDOM BOUNDARY CONDITIONS~ 

B. S. Gonehar and A. M. Aizen UDC 536.2 

The use of "direct" methods for solving heat conduction problems with random boundary conditions 
of the f irst  kind is considered in the one-dimensional case. This makes it possible to determine the pro- 
bability distribution density of temperature u and thermal flux q as functions of the relatively random dis-  
tributed boundary conditions, if the probability distribution density of the latter is given. 

Let u t be a random variable with the probability distribution density fl(ul) and let u~ be a deter-  
ministie quantity. We then have the probability distribution density of u and q expressed as follows: 

t z ~ ), (1) 

*Original article submitted June 24, 1970; abstract submitted March 6, 1972. 
~Original article submitted July 20, 1971; abstract submitted April 24, 1972. 
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where  z = u o r  q, and functions 01z, 02z depend on the choice of coordinates .  Subscripts 1 and 2 r e f e r  
to the coeff icients  of u 1 and u 2 respec t ive ly .  

Of special  in te res t  is the case  where  u 1 and u 2 a r e  random var iables  with probabil i ty  dis tr ibut ion 
densi t ies  fl(ul) and f2(u2). The probabi l i ty  distr ibution densi ty of t empera tu re  or thermal  flux is d e t e r -  
mined according to the formula  

' ~ , l ( U l ) / 2 " (  z - 01zul : t (z) d u  1 . (2) 
- 102, I 02z J 

With the values of f(z) obtained by formula (1) or  (2) one can de te rmine  the mathematical  expectancy,  
the d ispers ion ,  and the h i g h e r - o r d e r  moments  of random distr ibuted t empera tu re  and thermal  flux, which 
comple te ly  c h a r a c t e r i z e  the heat  t r ans fe r  p roces s  with random boundary conditions. 

ONE METHOD OF SOLVING HEAT CONDUCTION PROBLEMS 

WHICH PERTAIN TO THE HEATING OF BULKY BODIES IN 

A MOVING BED 

M .  K .  Kleiner UDC 536.24 

Heat  conduction prob lems  in the case  of bulky bodies in a moving bed belong in the ca tegory  of p rob -  
l ems  with complex boundary conditions: in addition to the usual boundary conditions of the third kind, there  
is also given an equation re la t ing the t empera tu re  of the gases and the t empera tu re  of the heated bodies.  
in the general  case :  

W(X) dtG(X)dx '~ - -  q (X) + ~dW [ t ~ _ t G ( X ) l : r _ B i [ t G ( X ) _ t ( l ,  X)I ~: Bil{tG(X ) _ tamb] ' (i) 

where  the given dif ferent iable  function W(X) depends on the water  equivalents of the gases and of the heated 
bodies,  and function Q(X) depends on the change in the heat  generat ion in the gaseous phase.  The meaning 
of all o ther  symbols  is as in [1]. 

The gist  of the proposed  method, general ly  s imi la r  to that shown in [2], is to f i r s t  solve the third 
boundary-value problem for an a r b i t r a r y  tG(X ) and then, by inser t ing this solution into (1), to find the func- 
tion tG(X ) which will sa t i s fy  the resul t ing  integrodifferent ial  equation. 

A numer ica l  implementat ion of this method has revea led  cer ta in  computational difficult ies within the 
range of small  W(X) values ,  i .e . ,  nea r  the point where  the f ree  t e rm and the kernel  of the integral  e q u a -  
tion have thei r  s ingular i t ies .  If W(X) is a l inear  function [1] 

m 0 al~ a 0 

W (X) = 2v + 2 • ~X, ~ - ~f too--  6c (2) 

and fl < 1 is sufficiently smal l ,  t he re fo re ,  then the problem can be solved by the per turbat ion  method as 
follows: 

t (~, x) = i 13~tk (p' x), (3) 
k ~  

tG(X) = i [~K tG,k (X). (4) 
k=0  

With (3) and (4), the original  problem can be reduced to a sy t sem of r e c u r r e n c e  equations for tk(p, X) and 
tG,k(X) a t  W(X) = const .  Each of these equations is mos t  conveniently solved by the method of in tegro-  
different ial  equations shown e a r l i e r ,  and the resul t ing  integral  equations by the method in [3], the gist  

Original a r t ic le  submit ted ( )e tcher  7, 1971; abs t rac t  submitted Apri l  13, 1972. 
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of the l a t t e r  being as follows. Le t  F(X, s) be the reso lvent  of the kernel  K(X, s). Then their  integral  
opera to rs  F*(X, s) and K*(X, s) (also the two functions F(X, s) and K(X, s)) a re  re la ted  as follows: 

/(* (x, s) = ~ ~p c* (yp), r* (x, s) = bp C* (zp), (5) 
p~l  p=l 

where  ~p, yp a r e  known p a r a m e t e r s  and bp, Zp a re  expressed  in t e r m s  of ~p, yp as follows: 

m 

1-~ " ~ ,  gn --0,  1 + ~ bp = 0  ( n = - l ,  2, 3 . . . . .  m). (6)  
Yn - -  Z Yn --  Zp 

n~l p~l 

The use of both methods covers  the ent i re  prac t ica l  range of W(X) values.  

These  methods yield a s e r i e s  of approximate  solutions,  provided the third boundary-value problem 
is f i r s t  solved by any one approximate  method. The approximate solutions have checked v e r y  well against  
the exact  solutions.  

it 
2. 
3, 
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TEMPERATURE FIELD OF A FLAT WALL 

VARYING HEAT TRANSFER COEFFICIENT 

V.  F .  S t e p a n c h u k  a n d  M .  L .  G u r i s  

W I T H  A P E R I O D I C A L L Y  

UDC 621.1.016.4:536.24 

When a v a p o r - w a t e r  mixture  flows through insulated pipes of a s team genera tor ,  the heat  t r ans fe r  
coeff icient  may  become per iodica l ly  var iable .  This fluctuation is indicated by dif ferent  vapor  content 
levels  in success ive  s team packets ,  The t ime-var ia t ion  of the heat  t r ans fe r  coefficient  can be expressed  

in t e rms  of the following law: 

% = m + n d  ~ . 

Here  w denotes the radian frequency and m,  n a r e  constants (n < m).  

The solution to the t rans ien t  heat  conduction prob lem for a fiat  wall a t  a constant t empera tu re  dif-  
ferenoe between the ambient  phases  and with a per iodical ly  var iable  heat  t r ans fe r  coeff icient  was found 

to be 
8--x 1 

with 5 denoting the wall thickness ,  ~ denoting the thermal  conductivity of the wall,  a denoting the thermal  
diffusivity,  T i denoting the t empera tu re  of the heating medium, and coefficients n, m de termined  f rom the 

boundary conditions. 

k ~  
Original a r t ic le  submitted February 28, 1972; abs t rac t  submitted Apri l  26, 1972. 
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The obtained solution indicates  that  the t e m p e r a t u r e  field of a f iat  wall with a per iod ica l ly  va r i a b l e  
hea t  t r a n s f e r  coeff ic ient  is quite complex ,  and its components  can be r e p r e s e n t e d  in t e r m s  of ha rmonic  
series. 

The magnitude of temperature fluctuations with time and the local temperature gradients in the wall 
can be quite appreciable arid are determined by the ratio n :m, the radian frequency, the wall thickness, 
and the thermophysical properties of the wall material. 

The performance of steam generator piping was calculated by this method. 

The results indicate wide temperature fluctuations and large temperature gradients over a wide range 
of rad ian  f requencies .  

EFFECT OF MODIFICATIONS IN THE GEOMETRY OF BONDED 

SURFACES ON THE THERMAL RESISTANCE OF SUCH JOINTS* 

V. M. Popov UDC 621.792.053:536.24 

A study was made  to de t e rmine  how the the rma l  r e s i s t a n c e  of the bonding in t e r l aye r  is affected by 
the geome t ry  of me ta l l i c  su r f aces  joined together  and by the v i scos i ty  of the adhes ive .  I t  has been e s t a b -  
l i shed exper imen ta l ly  that the t he rm a l  r e s i s t a n c e  of such an  in t e r l aye r  of low-v i scos i ty  adhes ive  i n c r e a s e s  
with su r face  roughness  and waviness ,  a lso  with mac ro -de f l ec t i ons  f rom the plane of the joint. 

The t h e r m a l  r e s i s t a n c e  of an adhes ive  joint as  a function of the in te r l aye r  thickness  is ,  in the c a s e  
of low-v i scos i ty  adhes ives ,  a ccu ra t e ly  enough desc r ibed  by the fo rmulas  given here .  

As the v i scos i ty  of the adhes ive  i n c r e a s e s ,  one notes that  the the rma l  r e s i s t a n c e  of the joint in-  
c r e a s e s  a t  a fixed in t e r l aye r  th ickness .  This  t rend is explained by the s lower  filling of su r f ace  cavi t ies  
due to the higher  v i scos i ty  of the adhesive .  

An effect ive method is p roposed  for reducing the the rmal  r e s i s t a n c e  of adhes ive  joints by adding a 
d i s p e r s e  f i l le r  with high the rma l  conductivity.  

COMPUTER(DIGITAL)-AIDED DESIGN OF THERMISTOR 

CIRCUITS WITH VARIABLE CONDITIONS OF HEAT TRANSFER~ 

N. M. Nedosekina and V. A. Palagin UDC 621.316.825 

The transient equation for an R-R T circuit is nonlinear. It has not been possible to arrive at a 
general analytical solution to this equation, because the thermistor parameters k and c v as well as the 

*Original article submitted December 7, 1971; abstract submitted May 17, 1972. 
Original article submitted April 4, 1972; abstract submitted May 18, 1972. 
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power  dra in  a r e  functions of the t e m p e r a t u r e  and depend not only on the type of t h e r m i s t o r  but a lso  on the 
conditions of hea t  t r ans f e r .  As a component  of an e lec t r ic  c i rcui t ,  a t h e r m i s t o r  can be used for probing 
var ious  physica l  p r o p e r t i e s  of the ambien t  medium functionally re la ted  to the t empera tu re .  Such p a r a m -  
e t e r s  a r e  the concentrat ion,  the velocity,  andthe  t e m p e r a t u r e  of the ambient  med ium as well  as the i r  com-  
bination. These  p a r a m e t e r s  may ,  m o r e o v e r ,  v a r y  in d ive r se  pulse  modes ,  which compl ica tes  apprec iab ly  
the calculat ion of t r ans ien t s  in an R - R  T c i rcui t .  I f  those p a r a m e t e r s  of  the med ium which a r e  re la ted  to 
the conditions of heat  t r a n s f e r  va ry  (and thus a t  the s a m e  t ime  the basic  t h e r m i s t o r  p a r a m e t e r s  vary) ,  then 
the only way to ana lyze  t rans ien ts  in t h e r m i s t o r  c i rcui t s  is with the aid of analog or  digital compute r s .  

The t rans ien t s  a r e  analyzed h e r e  by theRunge--Kut ta  method.  An a lgor i thm is developed for  solving 
the t r ans ien t  equation for  an R - R  T c i rcui t .  A p r o g r a m  is designed for  use  on a PROMIN' -M digital c o m -  
pu te r .  The t rans ien ts  a r e  calcula ted for va r ious  modes  of pulse  va r ia t ion  in the conditions of heat  t r ans f e r .  

The resu l t s  can be used in the des ign of t h e r m i s t o r  c i rcui t s  opera t ing in cont inuous- run  and pulse  
s y s t e m s  for  au tomat ica l ly  control l ing and regulat ing the p a r a m e t e r s  of the medium.  

MONODISPERSE ATOMIZATION OF A LIQUID BY A 

ROTATING DISK 

V. F, Dunskii and N. V. Nikitin UDC 66.069.8 

R e s e a r c h e r s  have often been in te res ted  in the abi l i ty  of ro ta t ing-d isk  a t o m i z e r s  to b r e a k  up a liquid 
into a monodispers ion ,  i .e . ,  into identical  drople ts  a t  a low flow ra te  of that liquid. A genera l iza t ion  of 
the r e s e a r c h  data has made  it poss ib le  to develop an approx imate  but valid calculat ion p rocedure .  

The bas ic  fo rmulas  a r e  given he re :  

F i r s t  mode  of a tomizat ion .  The range  of p a r a m e t e r  va lues  cor responding  to the f i r s t  mode  of a t o m i -  
zat ion is defined by the inequali ty 

0 < Ro.a o ~ 1 (1) 

The d i ame te r  of main  drople t s  is 

d = - -  (2) 
0) \ R p /  

The weight f rac t ion  of sa te l l i te  drople ts  is 
Q0.62 [30.62 o)0-48 V0.12 

E = 86 (%). G0.62 R0.30 

The d i ame te r  of the median  (with r e s p e c t  to mass )  sa te l l i te  drople ts  is 
1.15[ ~ \1/2 

(3) 

(4) 

Second mode of a tomiza t ion .  The range  of p a r a m e t e r  values  cor responding  to the f i r s t  and the s e c -  
ond mode,  i .e . ,  to monod i spe r se  a tomizat ion  is defined by the inequality 

pl.77 Q~ 0)1.2 ~0,33 
o < < 4.5 (5) 

ai.77 R~.3z 

Original  a r t i c l e  submi t ted  J a n u a r y  7, 1972; a b s t r a c t  submit ted  Apr i l  27, 1972. 
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The d iamete r  of the median (with r e spec t  to mass)  droplets  is, in the case  of low-viscos i ty  liquids 

and in the case  of h igh-viscos i ty  liquids 

Qo ) 2/7, 
din = 1.48 ( P, ~ R5/2 (6) 

2.12 o .o.27 Qo.3o6 ~0.014 
d m = (7) po,27 ~o.725 ~o.84 

The s ize  dis t r ibut ion of satel l i te  droplets  in the f i r s t  mode and of all droplets  in the second mode 
is a normal  one with the d ispers ion  f12 ~ 0.17 din. 

The t r a j ec to ry  of drople ts  in the f i r s t  mode and of low-viscos i ty  liquid drople ts  in the second mode 
is defined by the formulas  

= A In u o { 1 + bu 2/3 ~3/ 

x = 3ab ( ul/3-- u,/3- 1/'~1 (arctg ul/aV~---arctg u 1/3 ,/-b'-) ), (9) 

Z =CA ["c - -  A(  1 --e--V/A)]. (10) 

R 
09 
Q 

P 
P 

~F 

u 0 

U 

a = d2p/18 VAPA; 
b 0.167 (d/  uA)2/3; 

PA 
uA 

N O T A T I O N  

is the radius of disk; 
is the angular  veloci ty  of disk; 
is the flow ra t e  of liquid; 
is the densi ty of liquid; 
is the kinematic  v iscos i ty  of liquid; 
is the sur face  tension of liquid; 
is the t ime;  
is the absolute veloci ty  of drople t  a f te r  separat ion f rom the disk edge, equal to the 
pe r iphe ra l  disk veloci ty;  
is the hor izontal  component of drople t  veloci ty  a t  point (x, z) on t r a j ec to ry ;  

is the densi ty  of a i r ;  
is the kinematic v i scos i ty  of a i r .  

TURBULENT FLOW OF ANNULAR FILMS ALONG A 

VERTICAL SURFACE 

Ya. T. Borshchevskii, I. M. Fedotkin, 
M. N. Chepurnoi, and V. E. Shnaider 

UDC 532.542 

The authors  consider  the dra in  of turbulent  liquid f i lms along the inside sur face  of a ver t ica l  c i r cu l a r  
pipe.  In analyzing this flow, they as sume  a film to be sufficiently thin as  compared  to the pipe radius.  A 
film flows under the fo rce  of gravi ty and under a constant p r e s s u r e  gradient.  

Original  a r t ic le  submit ted October  6, 1971; abs t rac t  submitted Apri l  7, 1972. 
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